Chương I - Căn bậc hai. Căn bậc ba

TT

Cho \(\left(x+\sqrt{2011+x^2}\right)\left(y+\sqrt{2011+y^2}\right)=2011\).Tính giá trị \(T=x^{2011}+y^{2011}\)

AA
20 tháng 10 2019 lúc 21:33

Nhân 2 vế với \(\left(x-\sqrt{2011+x^2}\right)\) ta được:

\(\left(x^2-2011-x^2\right)\left(y+\sqrt{2011+y^2}\right)=2001\left(x-\sqrt{2011+x^2}\right)\)

\(\Leftrightarrow-2011\left(y+\sqrt{2011+y^2}\right)=2011\left(x-\sqrt{2011+x^2}\right)\)

\(\Leftrightarrow y+\sqrt{2011+y^2}=\sqrt{2011+x^2}-x\)(1)

Tương tự nhân 2 vế với \(\left(y-\sqrt{2011+y^2}\right)\) ta được:

\(x+\sqrt{2011+x^2}=\sqrt{2011+y^2}-y\)(2)

Cộng (1) và (2) vế theo vế ta được:

\(x+y=-x-y\)

\(\Leftrightarrow2\left(x+y\right)=0\)

\(\Leftrightarrow x+y=0\)

\(\Leftrightarrow x=-y\)

\(\Rightarrow T=-y^{2011}+y^{2011}=0\)

Bình luận (0)
 Khách vãng lai đã xóa