Ôn tập toán 7

YO

Cho :
 \(\left(2x_1-3y_1\right)^{2016}+\left(2x_2-3y_2\right)^{2016}+...+\left(2x_{2015}-2y_{2015}\right)^{2016}\le0\)
Tính \(A=\frac{x_1+x_2+x_3+...+x_{2015}}{y_1+y_2+y_3+...+y_{2015}}\)

 
TL
4 tháng 10 2016 lúc 17:31

Vì \(\left(2x_1-3y_1\right)^{2016}\ge0;\left(2x_2-3y_2\right)^2\ge0;......;\left(2x_{2015}-3y_{2015}\right)\ge0\)

nên  \(\left(2x_1-3y_1\right)^{2016}+\left(2x_2-3y_2\right)^{2016}+...+\left(2x_{2015}-3y_{2015}\right)\le0\)

\(\Leftrightarrow\left(2x_1-3y_1\right)^{2016}+\left(2x_2-3y_2\right)^{2016}+..+\left(2x_{2015}-3y_{2015}\right)^{2016}=0\)

\(\Leftrightarrow2x_1-3y_1=0;2x_2-3y_2=0;....;2x_{2015}-3y_{2015}=0\)

\(\Leftrightarrow2x_1=3y_1\)           

     \(2x_2=3y_2\)

    ............................

    \(2x_{2015}=3y_{2015}\)

\(\Leftrightarrow2\left(x_1+x_2+...+x_{2015}\right)=3\left(y_1+y_2+...+y_{2015}\right)\)

\(\Leftrightarrow\)\(\frac{x_1+x_2+x_3+...+x_{2015}}{y_1+y_2+y_3+...+y_{2015}}=\frac{3}{2}\)

 

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TA
Xem chi tiết
SS
Xem chi tiết
DT
Xem chi tiết
VH
Xem chi tiết
NM
Xem chi tiết
TT
Xem chi tiết
VK
Xem chi tiết
NN
Xem chi tiết