Violympic toán 7

MT

Cho \(\left(2x_1-3y_1\right)^{2004}+\left(2x_2+3y_2\right)^{2004}+\left(2x_3+3y_3\right)^{2004}+...+\left(2x_{2005}+3y_{2005}\right)^{2004}\le0\)

Chứng minh rằng: \(\dfrac{x_1+x_2+x_3+...+x_{2005}}{y_1+y_2+y_3+...+y_{2005}}=1,5\)

NL
20 tháng 11 2018 lúc 20:47

Ta có \(\left\{{}\begin{matrix}\left(2x_1-3y_1\right)^{2004}\ge0\\......\\\left(2x_{2005}-3y_{2005}\right)^{2004}\ge0\end{matrix}\right.\) \(\forall x_1;x_2...x_{2005};y_1;y_2;...y_{2005}\)

Mà theo đề cho \(\left(2x_1-3y_1\right)^{2004}+...+\left(2x_{2005}-3y_{2005}\right)^{2004}\le0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(2x_1-3y_1\right)^{2004}=0\\\left(2x_2-3y_2\right)^{2004}=0\\.........\\\left(2x_{2005}-3y_{2005}\right)^{2004}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x_1-3y_1=0\\2x_2-3y_2=0\\........\\2x_{2005}-3y_{2005}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{3}{2}y_1\\x_2=\dfrac{3}{2}y_2\\.....\\x_{2005}=\dfrac{3}{2}y_{2005}\end{matrix}\right.\)

Từ đó ta có:

\(\dfrac{x_1+x_2+...+x_{2005}}{y_1+y_2+...+y_{2005}}=\dfrac{\dfrac{3}{2}y_1+\dfrac{3}{2}y_2+...+\dfrac{3}{2}y_{2005}}{y_1+y_2+...+y_{2005}}\)

\(=\dfrac{\dfrac{3}{2}\left(y_1+y_2+...+y_{2005}\right)}{y_1+y_2+...+y_{2005}}=\dfrac{3}{2}=1.5\) (đpcm)

Bình luận (0)
NL
20 tháng 11 2018 lúc 18:46

Ghi lại đề đi bạn, nhìn qua dấu các biểu thức là biết bạn ghi sai đề rồi

Bình luận (1)

Các câu hỏi tương tự
MT
Xem chi tiết
TN
Xem chi tiết
KT
Xem chi tiết
H24
Xem chi tiết
LN
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết
TH
Xem chi tiết