Chương 1: KHỐI ĐA DIỆN

TD

cho lăng trụ ABC.A'B'C' có đáy là tam giác vuông tại A, AB=a, BC=2a. Hình chiếu của B' lên (ABC) trùng với tâm đường tròn ngoại tiếp H của tam giác ABC, góc giữa (CC',(ABB') bằng 60 độ. Tính V lăng trụ và góc giữa (HB',(ABB')

LH
29 tháng 7 2016 lúc 18:04

Giả sử (O,R) là tâm đường tròn ngoại tiếp tg ABC 
=> A'O _|_(ABC) 
=> V(ABC.A'B'C') = A'O.S(ABC) 

*S(ABC) = (AB.AC.sin120)/2 = 4a^2 

Lại có ^A'AO = 30o là góc tạo bở cạnh bên và mặt đáy 
=> A'O = OA.tan 30 = R.√3/3 

Mặt khác áp dụng định lý sin tg ABC 
=> AB/sin ^BCA =2R 
=> R = AB/2sin^BCA = 4a 
=> A'O = 4a√3/3 

=> V(ABC.A'B'C') = 4a√3/3. 4a^2 = (16√3a^3)/3 

* Giả sử OA cắt BC tại M 
Do tg ABC cân => AM _|_BC, mà BC _|_A'O 
=> BC _|_(A'OM) -----------(*) 

Từ M kẻ MN _|_AA' , Do (*) => BC _|_MN 
=> MN là đường vuông góc chung AA' và BC 
Do A'AO = 30 => MN = AM.sin 30 = AM/2 
mà AM = AB.sin^ABC = AB.sin30 = AB/2 = 2a 
=> MN =a 

Bình luận (1)

Các câu hỏi tương tự
TD
Xem chi tiết
HN
Xem chi tiết
NB
Xem chi tiết
NK
Xem chi tiết
TC
Xem chi tiết
DT
Xem chi tiết
BP
Xem chi tiết
TA
Xem chi tiết
H24
Xem chi tiết