Cho hình chóp tứ giác đều SABCD có cạnh đáy = a, 2 mp(SAB) và (SCD) vuông góc vs nhau, gọi M là trung điểm SD. Tính theo a V khối chóp và khoảng cách giữa 2 đt AM,SC
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt SAB là tam giác đều và nằm trong mặt phẳng vuông hóc với mặt phẳng đáy. Tính thể tích khối chóp S.ABCD và tính khoảng cách từ A đến mặt phẳng (SCD) theo a
Cho hình chóp S.ABC có đáy là tam giác vuông tại A. \(\widehat{ABC}=30^o\), SBC là tam giác đều cạnh a và mặt bên SBC vuông góc với đáy. Tính theo a thể tích của khối chóp S.ABC và khoảng cách từ điểm C đến mặt phẳng (SAB)
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AC = 2a, góc ACB = 30 độ. Hình chiếu vuông góc H của đỉnh S trên mặt đáy là trung điểm của cạnh AC và SH = \(\sqrt{2}a\). Tính theo a thể tích khối chóp S.ABC và khoảng cách từ điểm C đến mặt phẳng (SAB)
Cho hình chóp S.ABC co tam giác ABC vuông tại A,AB=Ac=a,I là trung điểm của SC,hình chiếu vuông góc của S lên mặt phẳng (ABC) là trung điểm H của BC,mặt phẳng (SAB) tạo với đáy 1 góc 60độ.Tính thể tích của khối chóp S.ABC và tính khoảng cách từ điểm I đến mặt phẳng (SAB) theo a. Ai giúp mình với :(
Cho hình chóp S.ABCD có đáy \ABCD là hình vuông cạnh a, cạnh SA vuông góc với đáy và SA = a. Gọi M, N lần lượt là trung điểm của các cạnh AD và SC.
1. Tính thể tích khối tứ diện MNBD.
2. Tính khoảng cách từ điểm D đến mặt phẳng (MNB).
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh bằng a. SAB là tam giác vuông cân tại S và nằm trong mặt phẳng vuông góc với đáy, góc giữa cạnh SC và mặt phẳng (ABCD) bằng 60 độ, cạnh AC = a. Tính \(\alpha\) theo thể tích khối S.ABCD và khoảng cách từ A đến mặt phẳng (SBC)
Cho hình chóp tứ giác đếu S.ABCD có đáy ABCD là hình vuông cạnh a. E là điểm đối xứng của D qua trung điểm của SA. M là trung điểm của AE, N là trung điểm của BC. Chứng minh MN vuông góc với BD và tính theo a khoảng cách giữa 2 đường thẳng MN và AC
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, \(SD=\frac{3a}{2}\). Hình chiếu vuông góc của S lên mặt đáy (ABCD) là trung điểm của cạnh AB. Tính theo a thể tích khối chóp s.ABCD và khoảng cách từ A đến mặt phẳng (SBD)