Chương 1: KHỐI ĐA DIỆN

LH

Cho hình chóp tứ giác đếu S.ABCD có đáy ABCD là hình vuông cạnh a. E là điểm đối xứng của D qua trung điểm của SA. M là trung điểm của AE, N là trung điểm của BC. Chứng minh MN vuông góc với BD và tính theo a khoảng cách giữa 2 đường thẳng MN và AC

TA
2 tháng 4 2016 lúc 14:57

B C D A S E P M N

Gọi P là trung điểm của SA. Ta có MNCP là hình bình hành nên MN song song với mặt phẳng (SAC). Mặt khác, BD vuông góc với mặt phẳng (SAC) nên BD vuông góc với MN.

Vì MN song song với mặt phẳng (SAC) nên 

\(d\left(MN,AC\right)=d\left(N,SAC\right)\)

                  \(=\frac{1}{2}d\left(B;\left(SAC\right)\right)=\frac{1}{4}BD=\frac{a\sqrt{2}}{4}\)

Vậy \(d\left(MN;AC\right)=\frac{a\sqrt{2}}{4}\)

Bình luận (0)

Các câu hỏi tương tự
MB
Xem chi tiết
NN
Xem chi tiết
TS
Xem chi tiết
DN
Xem chi tiết
NT
Xem chi tiết
PG
Xem chi tiết
CT
Xem chi tiết
TP
Xem chi tiết
DM
Xem chi tiết