Qua điểm M, kẻ đoạn thẳng HK vuông góc với AB và CD (H thuộc AB và K thuộc CD)
=> AHKD và HBCK là hcn
=> AH = DK và HB = KC
ABCD là hv \(\Rightarrow BM+MD=BD=\sqrt{2}AB=\sqrt{2}\)
\(\Delta HAM\) vuông tại H \(\Rightarrow MA^2=AH^2+HM^2\left(ptg\right)=DK^2+HM^2\)
\(\Delta HBM\) vuông tại H \(\Rightarrow MB^2=HM^2+HB^2\left(ptg\right)\)
\(\Delta KMD\) vuông tại K \(\Rightarrow MD^2=KM^2+KD^2\left(ptg\right)\)
\(\Delta KMC\) vuông tại K \(\Rightarrow MC^2=KC^2+MK^2\left(ptg\right)=HB^2+MK^2\)
Áp dụng BĐT Cauchy Shwarz, ta có:
\(\left(1+1\right)\left(MB^2+MD^2\right)\ge\left(MB+MD\right)^2\)
\(\Rightarrow MB^2+MD^2\ge\dfrac{\left(MB+MD\right)^2}{2}=\dfrac{\left(\sqrt{2}\right)^2}{2}=1\)
Ta có:
\(MA^2+MD^2+MB^2+MC^2\)
\(=\left(DK^2+HM^2\right)+\left(HM^2+HB^2\right)+\left(KM^2+KD^2\right)+\left(HB^2+MK^2\right)\)
\(=2\left(DK^2+KM^2\right)+2\left(HM^2+HB^2\right)\)
\(=2\left(MD^2+MB^2\right)\)
\(\ge2\left(\text{đ}pcm\right)\)
Dấu "=" xảy ra khi \(MA=MB=MC=MD=\dfrac{\sqrt{2}}{2}\)