Chương I - Hệ thức lượng trong tam giác vuông

CP

Cho hình vuông ABCD có cạnh bằng 1. M là điểm bất kì nằm trong tam giác. Chứng minh: MA^2+MB^2+MC^2+MD^2>=2

PA
26 tháng 7 2017 lúc 15:42

Qua điểm M, kẻ đoạn thẳng HK vuông góc với AB và CD (H thuộc AB và K thuộc CD)

=> AHKD và HBCK là hcn

=> AH = DK và HB = KC

ABCD là hv \(\Rightarrow BM+MD=BD=\sqrt{2}AB=\sqrt{2}\)

\(\Delta HAM\) vuông tại H \(\Rightarrow MA^2=AH^2+HM^2\left(ptg\right)=DK^2+HM^2\)

\(\Delta HBM\) vuông tại H \(\Rightarrow MB^2=HM^2+HB^2\left(ptg\right)\)

\(\Delta KMD\) vuông tại K \(\Rightarrow MD^2=KM^2+KD^2\left(ptg\right)\)

\(\Delta KMC\) vuông tại K \(\Rightarrow MC^2=KC^2+MK^2\left(ptg\right)=HB^2+MK^2\)

Áp dụng BĐT Cauchy Shwarz, ta có:

\(\left(1+1\right)\left(MB^2+MD^2\right)\ge\left(MB+MD\right)^2\)

\(\Rightarrow MB^2+MD^2\ge\dfrac{\left(MB+MD\right)^2}{2}=\dfrac{\left(\sqrt{2}\right)^2}{2}=1\)

Ta có:

\(MA^2+MD^2+MB^2+MC^2\)

\(=\left(DK^2+HM^2\right)+\left(HM^2+HB^2\right)+\left(KM^2+KD^2\right)+\left(HB^2+MK^2\right)\)

\(=2\left(DK^2+KM^2\right)+2\left(HM^2+HB^2\right)\)

\(=2\left(MD^2+MB^2\right)\)

\(\ge2\left(\text{đ}pcm\right)\)

Dấu "=" xảy ra khi \(MA=MB=MC=MD=\dfrac{\sqrt{2}}{2}\)

Bình luận (0)

Các câu hỏi tương tự
LG
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết
PH
Xem chi tiết
BA
Xem chi tiết
TD
Xem chi tiết
PP
Xem chi tiết
LA
Xem chi tiết
NG
Xem chi tiết