Kẻ \(BH//AD\left(H\in CD\right)\), kẻ BD
Ta có:
+) AB//CD (hình thang ABCD)
\(\Rightarrow\widehat{B_2}=\widehat{D_1}\) ( 2 góc so le trong )
+) BH//AD (cách vẽ)
\(\Rightarrow\widehat{D_2}=\widehat{B_1}\) ( 2 góc so le trong)
Xét \(\Delta DAB\) và \(\Delta BHD\), ta có:
\(\widehat{B_2}=\widehat{D_1}\left(cmt\right)\)
BD : chung
\(\widehat{D_2}=\widehat{B_1}\left(cmt\right)\)
\(\Rightarrow\) \(\Delta DAB\) = \(\Delta BHD\) (gcg)
\(\Rightarrow AD=BH\)
mà \(AD=3cm\left(gt\right)\)
\(\Rightarrow BH=3cm\)
+) \(\Delta DAB\) = \(\Delta BHD\) (cmt)
\(\Rightarrow AB=DH\)
mà \(AB=4cm\left(gt\right)\)
\(\Rightarrow DH=4cm\)
+) \(DH+HC=DC\left(H\in DC\right)\)
\(\Rightarrow4+HC=8\)
\(\Rightarrow HC=4cm\)
Xét \(\Delta BHC,\) ta có:
\(5^2=3^2+4^2\)
\(\Rightarrow BC^2=BH^2+HC^2\) (Định lý Py-ta-go)
\(\Rightarrow\Delta BHC\) vuông tại H
\(\Rightarrow\widehat{H_1}=90^0\)
+) AD//BH
\(\Rightarrow\widehat{ADH}=\widehat{H_1}\) (2 góc động vị)
\(\Rightarrow\widehat{ADH}=90^0\)
\(\Rightarrow\) Hình thang ABCD là hình thang vuông
Chúc bạn học tốt