Xét tứ giác AEMF có
ME//AF
MF//AE
Do đó: AEMF là hình bình hành
Để MA là tia phân giác của góc EMF thì AEMF là hình thoi
=>AM là tia phân giác của góc BAC
Vậy: M là chân đường phân giác kẻ từ A xuống CB
Xét tứ giác AEMF có
ME//AF
MF//AE
Do đó: AEMF là hình bình hành
Để MA là tia phân giác của góc EMF thì AEMF là hình thoi
=>AM là tia phân giác của góc BAC
Vậy: M là chân đường phân giác kẻ từ A xuống CB
cho tam giác ABC có AB=AC. Gọi M là trung điểm của BC, kẽ ME vuông góc với AB tại E, MF vuông góc với AC tại F. Gọi K là trung điểm của È. Từ C kẻ đường thằng song song vs AM cắt tia BA tại D chứng minh A là trung điểm BD
cho tam giác abc vuông tại a đường cao ah abc có ab<ac. Trên cạnh AC lấy điểm E sao cho AB = AE. Tia phân giác của góc A cắt BC tại D A trên tia đối của tia BA lấy điểm F sao cho BF = EC. Chứng minh BE song song FC
cho tam giác ABC có 3 góc nhọn. và AB<AC
kẻ BE vuông góc với Ac tại E, CF vuông góc với AB tại F, BE cắt CF tại H
kẻ HQ song song với AC, HP song song với AB ( Q thuộc AB, P thuộc AC)
a) cm: Tam giác AHQ=tam giác HAP
b) cho M là trung điểm của BC.
cm: tam giác MEF cân và góc AEF=góc ABC
c) cm: HA+HB+HC<2/3(AB+AC+BC)
cho tam giác ABC có AB=AC .H là trung điểm của BC a, Chứng minh tam giác ABH=ACH b, Chứng minh AH vuống góc BC c, Trên cạnh AB lấy điểm M . Trên cạnh AC lấy điểm N sao cho AM =AN .gọi E là giao điểm của AH và NM .Chúng minh MN song song với BC ( ghi giả thiết kết luận nha )
Cho tam giác ABC, trên tia đối của AB lấy D sao cho AD=AB. Lấy G thuộc AC sao cho AG = 1/3.AC. Tia DG cắt BC tại E; qua E vẽ đường thẳng song song với BD; qua D vẽ đường thẳng song song với BC. Hai đường này cắt nhau tại F. Gọi M là giao của È và CD. Chứng minh 3 điểm B, G, M thẳng hàng.
Cho tam giác ABC. Kẻ tia phân giác AD của Â( D thuộc BC). Từ D kẻ đường thẳng song song với AB, đường này cắt cạnh AC tại điểm E. Qua E ta kẻ đường thẳng song song với cạnh BC, đường thẳng này cắt cạnh AB tại điểm E.
a) CMinh: Góc EAD= ADE
b) Cminh: Góc ABC= DEF
Cho tam giác cân ABC ;đáy BC,góc BAC=20o . Trên cạnh AB lấy điểm E sao cho góc BCE = 50o . Trên cạnh AC lấy điểm D sao cho góc CBD= 60o . Qua D kẻ đường thẳng song song với BC , nó cắt AB tại F . Gọi O là giao điểm của BD và CF
a. Chứng minh tam giác AFC= tam giác ADB
b. CM tam giac OFD và tam giác OBC là các tam giác đều
c. Tính góc EOB
d. CM tam giác EFD = tam giác EOD
e. Tính góc BDE
Cho tam giác ABC . GỌi M,N lần lượt là trung điểm của cạnh AB và AC . Trên tia đối của tia MC lấy điểm P sao cho MP = MC . Trên tia đối của tia NB lấy điểm Q sao cho NQ = NB .
a) Chứng minh A là trung điểm của PQ
b) Chứng minh MN song song với BC và 4MN = PQ
c) Cho biết \(\widehat{CAB}=90^o\) . Chứng minh \(MP^2=BC^2-\dfrac{3}{4}AB^2\)
Cho \(\Delta ABC\) vuông tại A (AB>AC).Vẽ tia phân giác của góc C cắt AB tại D.Trên cạnh BC lấy điểm E sao cho CE=CA
a)Chứng minh:\(\Delta CDA=\Delta CDE\) và \(DE\perp BC\)
b)Qua C vẽ đường thẳng vuông góc với AC.Qua A vẽ đường thẳng song song với CD,hai đường này cắt nhau tại M.Chứng minh: AM=CD
c)Qua B vẽ đường thẳng vuông góc với CD tại N và cắt AC tại K.Chứng minh:AK=BEvà K;E;D thẳng hàng.
(❤Mọi Người Nhớ Giúp Mình Nha❤)