Tham khảo:
Do \(ex>0;∀xex>0;∀x\)
Diện tích hình phẳng:
\(S=2∫0exdx=ex|20=e2−1\)
Tham khảo:
Do \(ex>0;∀xex>0;∀x\)
Diện tích hình phẳng:
\(S=2∫0exdx=ex|20=e2−1\)
Cho mặt phẳng (H) giới hạn bởi đồ thị hàm số y=x mũ 3 -x, trục hoành và hai đường thẳng x=0,x=1.Thể tích khối tròn xoay tạo thànhkhi quay hình (H) quanh trục ox bằng
Tính S hình phẳng giới hạn bởi y=cos^2x,Ox,Oy,x=pi
Câu 1: Diện tích hình phẳng giới hạn bởi hai đường thẳng x=0,x=\(\pi\) đồ thị hàm
số y =cosx và trục Ox là
Câu 2: Diện tích hình phẳng được giới hạn bởi đồ thị hàm số y=xe\(^x\) , trục hoành và
hai đường thẳng x=-2,x=3có công thức tính là
Câu 3: Cho hình (H) là hình phẳng giới hạn bởi parabol y =x\(^2\) -4x+4, đường
cong y =\(x^3\) và trục hoành (phần tô đậm trong hình vẽ). Tính diện tích S của hình
(H )
Câu 4: Diện tích hình phẳng giới hạn bởi 2 đồ thị f(x)=\(x^3-3x+2\), g(x)=x+2 là
Cho hình phẳng (H) được giới hạn bởi đường cong (C) y=e^x,trục Õ, trục Oy và đường thẳng x=2. Diện tích của hp (H) là
Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y=x mũ 2, trục hoành. Thể tích khối tròn xoay tạo thành khi quay hình (H) quanh trục ox bằng
a. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y=x ( 1+5x2) 3, đường thẳng x=1 và trục hoành.
b. Tính diện tích hình phẳng giới hạn bởi hàm số ý = cos2x, đường thẳng x=π\4 trục tung và trục hoành.
diện tích hình phẳng được giới hạn bởi đồ thị hàm số y=x^2,trục hoành x=-1,x=3 là
Pham Trong Bach 12 tháng 7 2019 lúc 7:18 Tìm thể tích vật thể tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường y = 2-x và y = -x xung quanh trục Ox.
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y=\(\frac{1}{x\left(x^3+1\right)}\) x=1 ,x=2 và trục Ox