Tam giác A'AC vuông cân tai A và A'C=a nên A'A=AC=\(\frac{a}{\sqrt{2}}\)
Do đó : \(AB=B'C'=\frac{a}{2}\)
\(V_{ABB'C}=\frac{1}{3}B'C'.S_{\Delta ABB'}=\frac{1}{6}B'C'.AB.BB'=\frac{a^3\sqrt{2}}{48}\)
Gọi H là chân đường cao kẻ từ A của tam giác A'AB. Ta có
\(\begin{cases}AH\perp A'B\\AB\perp BC\end{cases}\)\(\Rightarrow AH\perp\left(A'BC\right)\)
Nghĩa là \(AH\perp\left(BCD'\right)\Rightarrow AH=d\left(A,\left(BCD'\right)\right)\)
Ta có :
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AA'^2}\)
Do đó \(d\left(a,\left(BCD'\right)\right)=AH=\frac{a\sqrt{6}}{6}\)