Chương 1: KHỐI ĐA DIỆN

BC

 Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, BC = 2a. Hình chiếu vuông góc của điểm S lên mặt phẳng (ABC) trùng với trung điểm của BC, mặt phẳng (SAC) tạo với đáy (ABC) một góc 600 . Tính thể tích hình chóp S.ABC và khoảng cách từ điểm I đến mặt phẳng (SAC) theo a, trong đó I là trung điểm SB.  

LH
14 tháng 8 2016 lúc 12:54

Gọi H, J lần lượt là trung điểm của BC, AC.  

Ta có : \(\begin{cases}SH\perp\left(ABC\right)\\HJ\perp AC\end{cases}\) \(\Rightarrow AC\perp SJ\)=> SJH = 60 độ

\(AB=\frac{BC}{\sqrt{2}}=a\sqrt{2};HJ=\frac{AB}{2}=\frac{\sqrt{2a}}{2};SH=HJ.\tan60^o=\frac{a\sqrt{6}}{2}\)

Ta có : \(V_{S.ABC}=\frac{1}{3}SH\frac{AB.AC}{2}=\frac{1}{6}.\frac{\sqrt{6}}{2}.\left(\sqrt{2}\right)^2.a^3=\frac{a^3\sqrt{6}}{6}\)

Gọi E là hình chiếu của H lên SJ, khi đó ta có \(\begin{cases}HE\perp SJ\\HE\perp AC\end{cases}\) \(\Rightarrow HE\perp\left(SAC\right)\)

Mặt khác, do IH SC IH SAC / / (SAC)  , suy ra 

\(d\left[I,\left(SAC\right)\right]=d\left[H,\left(SAC\right)\right]=HE=HJ.\sin60^o=\frac{\sqrt{6}}{4}a\)

Bình luận (0)
LH
14 tháng 8 2016 lúc 12:48

ok chờ tí

Bình luận (5)
PN
14 tháng 8 2016 lúc 20:34

ck hay ghê

cop bài trên mạng oy kêu ng ta giúp ck

heeeeeeeeeee

vk cũng đã làm z oy

Bình luận (8)

Các câu hỏi tương tự
NH
Xem chi tiết
LS
Xem chi tiết
LT
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
PT
Xem chi tiết
PK
Xem chi tiết
PH
Xem chi tiết
NU
Xem chi tiết