Bài tập cuối chương 4

H24

Cho hình hộp ABCD.A’B’C’D‘. Gọi M, N lần lượt là trung điểm của các cạnh AD, A’B‘. Chứng minh rằng:

a) BD // B’D‘, (A’BD) // (CB’D’) và MN // (BDD’B‘).

b) Đường thẳng AC‘ đi qua trọng tâm G của tam giác A‘BD.

QL
22 tháng 9 2023 lúc 20:47


a) Ta có: (ABCD) // (A’B’C’D’)

\(\left( {B'D'DB} \right) \cap \left( {A'B'C'D'} \right) = B'D',\)

\(\left( {B'D'DB} \right) \cap \left( {ABCD} \right) = BD\).

Suy ra B'D' // DB.

Xét (A'BD) và (CB'D') có BD // B'D', A'B // CD'.

Suy ra (A'BD) //(CB'D').

Xét tứ giác B'NMO ta có: B'N = MO, B'N // MO.

Suy ra B'NMO là hình bình hành.

Suy ra B'O // MN hay MN // (BDD'B').

b) Xét tứ giác A'C'OA ta có: A'C' // AO, A'C' = 2AO

Suy ra A'G =2GO.

Mà O là trung điểm BD.

Suy ra G là trọng tâm tam giác A'BD.

Như vậy AC' đi qua trọng tâm G của tam giác A'BD.

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết