Bài 24. Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng

H24

Cho hình đóp S.ABC có SA \( \bot \) (ABC), Tam giác ABC vuông tại B, SA=AB=BC=a 

a) Xác định hình chiếu của A trên mặt phẳng (SBC)

b) Tính góc giữa SC và mặt phẳng (ABC).

QL
22 tháng 9 2023 lúc 20:14

loading...

a) Trong (SAB) kẻ \(AD \bot SB\) tại D.

\(\left. \begin{array}{l}BC \bot AD\\SB \bot AD\\BC \cap SB = \left\{ B \right\}\end{array} \right\} \Rightarrow AD \bot \left( {SBC} \right) \Rightarrow \)D là hình chiếu của A trên (SBC).

b) A là hình chiếu của S trên (ABC) \(\left( {SA \bot \left( {ABC} \right)} \right)\)

C là hình chiếu của C trên (ABC)

\( \Rightarrow \) AC là hình chiếu của SC trên (ABC)

\( \Rightarrow \) \(\left( {SC,\left( {ABC} \right)} \right) = \left( {SC,AC} \right) = \widehat {SCA}\)

Xét tam giác ABC vuông tại B có

\(A{C^2} = A{B^2} + B{C^2} = 2{a^2} \Rightarrow AC = a\sqrt 2 \)

Xét tam giác SAC vuông tại A có

\(\tan \widehat {SCA} = \frac{{SA}}{{AC}} = \frac{a}{{a\sqrt 2 }} = \frac{1}{{\sqrt 2 }} \Rightarrow \widehat {SCA} = \arctan \frac{1}{{\sqrt 2 }}\)

Vậy \(\left( {SC,\left( {ABCD} \right)} \right) = \arctan \frac{1}{{\sqrt 2 }}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết