Ôn tập toán 8

DT

Cho hình chữ nhật ABCD. Kẻ BH vuông góc với AC. Gọi M là trung điểm của AH, K là trung điểm của CD. Chứng minh: BM vuông góc với MK

PT
18 tháng 9 2016 lúc 9:14

A B C D H M K N E

Gọi N là trung điểm của BH

=> MN là đường trung ình của tam giác ABH

=>MN//AB, MN=1/2 AB

Mà AB=CD và AB//CD

=>MN//CD, MN = 1/2 CD

=> MNCK là hình bình hành

=> NC//MK (1)

Ta có: MN //AB

AB vuông góc với BC

=> MN vuông góc với BC tại E (E thuộc BC)

Tam giác BCM có BH và ME là đường cao và chúng cắt nhau tại N

=> CN vuông góc với BM (2)

Từ (1) và (2) suy ra:

BM vuông góc với MK (đpcm)

 

Bình luận (1)

Các câu hỏi tương tự
CT
Xem chi tiết
VP
Xem chi tiết
H24
Xem chi tiết
HM
Xem chi tiết
HM
Xem chi tiết
ND
Xem chi tiết
ND
Xem chi tiết
PN
Xem chi tiết
TD
Xem chi tiết