Bài 5. Hình chữ nhật

H24

Cho hình chữ nhật ABCD có hai đường chéo AC và BD cắt nhau tại O. Gọi M, N lần lượt là hình chiếu của O trên AB, BC. Chứng minh: \(MN = \dfrac{1}{2}AC\).

HM
11 tháng 1 2024 lúc 16:46

Do ABCD là hình chữ nhật, O là giao điểm của AC và BD

Suy ra OA = OB = OC = OD.

Xét tứ giác MBNO có:

\(\widehat M = \widehat N = {90^0}\) (Do M, N lần lượt là hình chiếu của O trên AB, BC)

\(\widehat B = {90^0}\)

 nên MBNO là hình chữ nhật.

Suy ra MN = BO (tính chất hai đường chéo của hình chữ nhật)

\( MN = \dfrac{1}{2}AC\) (do \(BO = AO = OC = \dfrac{1}{2}AC\))

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết