Bài 26. Khoảng cách

H24

Cho hình chóp S.ABC có SA \( \bot \) (ABC), SA = h. Gọi M, N, P tương ứng là trung điểm của SA, SB, SC.

a) Tính d((MNP),(ABC)) và d(NP,(ABC)).

b) Giả sử tam giác ABC vuông tại B và AB = a. Tính d(A,(SBC)).

QL
22 tháng 9 2023 lúc 20:23

a) +) Xét tam giác SBC có

N, P lần lượt là trung điểm SB, SC

\( \Rightarrow \) PN là đường trung bình tam giác SBC

\( \Rightarrow \) PN // BC \( \Rightarrow \) PN // (ABC)

+) Xét tam giác SAB có

N, M lần lượt là trung điểm SB, SA

\( \Rightarrow \) MN là đường trung bình tam giác SAB

\( \Rightarrow \) MN // AB

+) \(\left. \begin{array}{l}PN//BC,MN//AB\\PN \cap MN = \left\{ N \right\},BC \cap AB = \left\{ B \right\}\end{array} \right\} \Rightarrow \left( {MNP} \right)//\left( {ABC} \right)\)

\( \Rightarrow \) d((MNP), (ABC)) = d(M, (ABC)) = MA \( = \frac{{SA}}{2} = \frac{h}{2}\) do SA \( \bot \) (ABC)

+) PN // (ABC) \( \Rightarrow \) d(NP,(ABC)) = d(N,(ABC)) = d(M,(ABC))\( = \frac{h}{2}\) (do MN // (ABC))

b)

loading...

Ta có \(SA \bot BC,AB \bot BC \Rightarrow BC \bot \left( {SAB} \right);BC \subset \left( {SBC} \right) \Rightarrow \left( {SAB} \right) \bot \left( {SBC} \right)\)

\(\left( {SAB} \right) \cap \left( {SBC} \right) = SB\)

(SAB): kẻ \(AH \bot SB\)

\( \Rightarrow AH \bot \left( {SBC} \right) \Rightarrow \) d(A,(SBC)) = AH

Xét tam giác SAB vuông tại A có

\(\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} = \frac{1}{{{h^2}}} + \frac{1}{{{a^2}}} = \frac{{{a^2} + {h^2}}}{{{h^2}{a^2}}} \Rightarrow AH = \frac{{ah}}{{\sqrt {{a^2} + {h^2}} }}\)

Vậy \(d\left( {A,\left( {SBC} \right)} \right) = \frac{{ah}}{{\sqrt {{a^2} + {h^2}} }}\)

 

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết