Chương 1: KHỐI ĐA DIỆN

LT

 Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, với ;  AC=\(\frac{a}{2}\) BC a  . Hai mặt phẳng (SAB) và (SAC) cùng tạo với mặt đáy (ABC) góc 600 . Tính thể tích khối chóp S.ABC và khoảng cách từ B tới mặt phẳng (SAC) theo a biết mặt phẳng (SBC) vuông góc với đáy (ABC). 

LH
14 tháng 8 2016 lúc 12:57

Kẻ SH vuông góc với BC tại H => SH vuông góc với (ABC) 
Kẻ HM vuông góc với AB tại M và HN vuông góc với AC tại N 
Ta có góc SMH = góc SNH = 60 độ 
Dễ thấy tam giác SHM = tam giác SHN => HM = HN 
Ta có HM = HB.sin 30 = 1/2 HB hay HB = 2 HM 
HN = HC.sin 60 = HC.căn 3 /2 => HC = 2/căn 3.HN = 2/căn 3 .HM 
=> BC = a = HB + HC = ( 2 + 2/căn 3).HM 
=> HM = a/(2 + 2/căn 3) = a.căn 3 /(2+ 2.căn 3) 
=> SH = HM.tan 60 = 3a/(2+2.căn 3) 
Có AB = BC/2 = a/2 
AC = BC.căn 3/2 = a.căn 3/2 
S(ABC) = 1/2.AB.AC = 1/8.a^2.căn 3 
=> V(SABC) = 1/3.3a/(2+2.căn 3) . 1/8.a^2.căn 3 = a^3.căn 3 /[16.(1+ căn 3)]

Bình luận (0)

Các câu hỏi tương tự
BC
Xem chi tiết
HT
Xem chi tiết
PK
Xem chi tiết
LS
Xem chi tiết
NU
Xem chi tiết
NH
Xem chi tiết
PT
Xem chi tiết
PH
Xem chi tiết
H24
Xem chi tiết