Ôn tập toán 8

NH

Cho hình bình hành ABCD có BC =2AB. Gọi M là trung điểm của AD. Kẻ CE vuông góc với AB. Chứng minh: góc EMD= 3 lần góc AEM?

LH
18 tháng 8 2016 lúc 6:59

A) ta có: MN//AB//CD ( MN và AB cùng vuông góc với CE) 
và MD//NC (AD//BC) 
=> MNCD là hình bình hành (1) 
MD=AD/2 
MN=AB=AD/2 
nên MD=MN (2) 
từ (1)(2) => MNCD là hình thoi. 
B) do MN//AB//CD(câu a) 
và M là trung điểm AD 
=> F là trung điểm EC => MF là đường trung tuyến của tam giác MEC 
với lại MF là đường cao của tam giác MEC(MF vuông góc với EC) 
=> tam giác MEC cân tại M 
C) tam giác MEC cân tại M và MF là đường cao của tam giác MEC 
=> MF là đường phân giác của tam giác MEC 
=> góc EMF=góc FMC 
góc AEM=góc EMF(AB//MN) 
góc FMC=góc CMD(MNCD là hình thoi nên đường chéo MC là phân giác) 
từ 3 điều trên suy ra góc AEM=EMF=FMC=CMD 
=> 2AEM=FMC+CMD 
=> 2AEM=NMD=BAD(AB//MN) 

Bình luận (2)
LH
18 tháng 8 2016 lúc 7:06

Bổ sung: Vậy EMD = 3AEM

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
NH
Xem chi tiết
HN
Xem chi tiết
VP
Xem chi tiết
HM
Xem chi tiết
HM
Xem chi tiết
DT
Xem chi tiết
NP
Xem chi tiết
TT
Xem chi tiết