Chương II - Hàm số bậc nhất

LD

cho hàm số y = (2m - 3)x - 1 ( m khác \(\dfrac{3}{2}\)\(\dfrac{ }{ }\)) có đồ thị đường thẳng (d). Tìm giá trị của m sao cho khoảng cách từ gốc tọa độ đến đường thẳng (d) bằng \(\dfrac{1}{\sqrt{5}}\)

NA
12 tháng 3 2023 lúc 21:47

- Gọi M(x0,y0) ,N(x1,y1) lần lượt là giao điểm của đường thẳng (d): \(y=\left(2m-3\right)x-1\) với trục tung, trục hoành \(\Rightarrow x_0=y_1=0\).

Vì M(0;y0) thuộc (d) nên: \(y_0=\left(2m-3\right).0-1=-1\)

\(\Rightarrow M\left(0;-1\right)\) nên \(OM=1\) (đvđd)

    \(N\left(x_1;0\right)\) thuộc (d) nên: \(\left(2m-3\right)x_1-1=0\Rightarrow x_1=\dfrac{1}{2m-3}\)

\(\Rightarrow N\left(\dfrac{1}{2m-3};0\right)\) nên \(ON=\dfrac{1}{2m-3}\) (đvđd)

*Hạ OH vuông góc với (d) tại H \(\Rightarrow OH=\dfrac{1}{\sqrt{5}}\)

Xét △OMN vuông tại O có OH là đường cao.

\(\Rightarrow\dfrac{1}{OM^2}+\dfrac{1}{ON^2}=\dfrac{1}{OH^2}\)

\(\Rightarrow1+\left(2m-3\right)^2=5\)

\(\Rightarrow2m-3=\pm2\)

\(\Rightarrow\left[{}\begin{matrix}m=\dfrac{5}{2}\\m=\dfrac{1}{2}\end{matrix}\right.\) (nhận)

 

 

Bình luận (1)
NA
12 tháng 3 2023 lúc 21:49

Bình luận (0)

Các câu hỏi tương tự
UT
Xem chi tiết
2M
Xem chi tiết
2S
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
2S
Xem chi tiết
NL
Xem chi tiết
NP
Xem chi tiết
H24
Xem chi tiết