Bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số

QT

Cho hàm số f(x)=\(\dfrac{x+m}{x+1}\)( m là tham số thực) gọi S là tập hợp tất cả các giá trị của m sao cho \(\min\limits_{\left[0;1\right]}\left|f\left(x\right)\right|+\max\limits_{\left[0;1\right]}\left|f\left(x\right)\right|=2\). Số phần tử của A là 

A.6 

B.2 

C.1 

D.4

 

HH
4 tháng 4 2021 lúc 0:34

Bạn tham khảo ạ!

Cho hàm số f(x) = \(\dfrac{x+m}{x+1}\) (m là tham số thực). Gọi S là tập hợp tất cả các giá trị của tham số m sao cho \(... - Hoc24

Còn nếu chưa hiểu cách làm thì bạn có thể hỏi anh Lâm hoặc chính người làm bài này :)

Bình luận (0)
AH
4 tháng 4 2021 lúc 2:16

Lời giải:

Nếu $m=1$ thì hàm $f(x)=1$ là hàm hằng thì không có cực trị.

Nếu $m\neq 1$;

$f'(x)=\frac{1-m}{(x+1)^2}$. $m>1$ thì hàm nghịch biến trên $[0;1]$, mà $m< 1$ thì hàm số đồng biến trên $[0;1]$

Từ đó suy ra hàm số đạt cực trị tại biên, tức là $(f_{\min}, f_{\max})=(f(1),f(0))=(m, \frac{m+1}{2})$ và hoán vị.

Giờ ta đi giải PT:

$|m|+|\frac{m+1}{2}|=2$

Dễ dàng giải ra $m=1$ hoặc $m=\frac{-5}{3}$

Do đó đáp án là B.

Bình luận (0)