Ôn tập chương I

SK

Cho hai hình bình hành ABCD và EBEF với A, D, F không thẳng hàng. Dựng các vectơ \(\overrightarrow{EH}\) và \(\overrightarrow{FG}\) bằng vectơ \(\overrightarrow{AD}\). Chứng minh tứ giác CDGH là hình bình hành ?

NH
19 tháng 5 2017 lúc 14:36

Vectơ

\(\overrightarrow{EH}=\overrightarrow{AD},\overrightarrow{FG}=\overrightarrow{AD}\Rightarrow\overrightarrow{EH}=\overrightarrow{FG}\)

=> Tứ giác FEHG là hình bình hành

=> \(\overrightarrow{GH}=\overrightarrow{FE}\) (1)

Ta có \(\overrightarrow{DC}=\overrightarrow{AB},\overrightarrow{AB}=\overrightarrow{FE}\)

=> \(\overrightarrow{DC}=\overrightarrow{FE}\) (2)

Từ (1) và (2) ta có \(\overrightarrow{GH}=\overrightarrow{DC}\)

Vậy tứ giác GHCD là hình bình hành.

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết