Ôn tập Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy của tam giác

SK

Cho hai đường thẳng phân biệt không song song a và b, điểm M nằm bên trong hai đường thẳng này. Qua M lần lượt vẽ đường thẳng c vuông góc với a tại P, cắt b tại Q và đường thẳng d vuông góc với b tại R, cắt a tại S. Chứng minh rằng đường thẳng qua M, vuông góc với SQ cũng đi qua giao điểm của a và b ?

QD
19 tháng 4 2017 lúc 18:05

(a) và (b) không song song nên (a) cắt (b), gọi giao điểm là O. Tam giác OSQ có PQ và RS là hai đường cao gặp nhau tại M nên M là trực tâm của tam giác nên đường thẳng vẽ từ M và vuông góc với SQ là đường cao thứ ba của tam giác tức là đường vuông góc với SQ vẽ từ M cũng đi qua giao điểm của a và b

Bình luận (0)
NT
19 tháng 4 2017 lúc 19:29

(a) và (b) không song song nên (a) cắt (b), gọi giao điểm là O. Tam giác OSQ có PQ và RS là hai đường cao gặp nhau tại M nên M là trực tâm của tam giác nên đường thẳng vẽ từ M và vuông góc với SQ là đường cao thứ ba của tam giác tức là đường vuông góc với SQ vẽ từ M cũng đi qua giao điểm của a và b



Bình luận (0)
AT
19 tháng 4 2017 lúc 20:58

Giải bài 69 trang 88 SGK Toán 7 Tập 2 | Giải toán lớp 7

Vì a và b không song song nên chúng cắt nhau giả sử tại A.

Xét ΔAQS có:

QP ⊥ AS (vì QP ⊥ a)

SR ⊥ AQ (vì SR ⊥ b)

Ta có QP và RS cắt nhau tại M. Vậy M là trực tâm của ΔAQS.

=> Đường thẳng đi qua M và vuông góc với QS tại H sẽ là đường cao thứ ba của ΔAQS.

Vậy MH phải đi qua đỉnh A của ΔAQS hay đường thẳng vuông góc với QS đi qua giao điểm của a và b (đpcm).

Bình luận (0)

Các câu hỏi tương tự
MD
Xem chi tiết
TL
Xem chi tiết
TL
Xem chi tiết
HT
Xem chi tiết
NT
Xem chi tiết
NN
Xem chi tiết
XG
Xem chi tiết
TQ
Xem chi tiết
VH
Xem chi tiết