Violympic toán 7

DM

Cho hai đại lượng tỉ lệ nghịch x và y ;x1,x2 là hai giá trị bất kì của x ; y1, y2 là hai giá trị tương ứng của y. Tính y1, y2 biết y1^2+y2^2=52 và x1=2, x2=3

NT
26 tháng 6 2022 lúc 9:15

Vì x và y tỉ lệ nghịch nên \(x_1y_1=x_2y_2\)

=>\(2y_1=3y_2\)

hay \(\dfrac{y_1}{3}=\dfrac{y_2}{2}\)

Đặt \(\dfrac{y_1}{3}=\dfrac{y_2}{2}=k\)

=>\(y_1=3k;y_2=2k\)

Ta có: \(y_1^2+y_2^2=52\)

\(\Leftrightarrow9k^2+4k^2=52\)

\(\Leftrightarrow k^2=4\)

Trường hợp 1: k=2

=>y1=6; y2=4

Trường hợp 2: k=-2

=>y1=-6; y2=-4

Bình luận (0)

Các câu hỏi tương tự
AB
Xem chi tiết
NL
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
UN
Xem chi tiết
VN
Xem chi tiết
NL
Xem chi tiết
TU
Xem chi tiết
KP
Xem chi tiết