Violympic toán 7

NS

cho hai đa thức f(x)=\(3x^2-6x+3x^3\) và g(x)=-9+\(7x^4+2x^2+2x^3\)

a.tìm nghiệm của đa thức f(x). c/m x=0 là nghiệm của đa thức f(x) nhưng ko phải là nghiệm cuả đa thức g(x)

NT
13 tháng 6 2020 lúc 11:41

a) Đặt F(x)=0

\(3x^2-6x+3x^3=0\)

\(\Leftrightarrow3x^3+3x^2-6x=0\)

\(\Leftrightarrow3x\left(x^2+x-2\right)=0\)

\(\Leftrightarrow3x\left(x^2+2x-x-2\right)=0\)

mà 3>0

nên \(x\left[x\left(x+2\right)-\left(x+2\right)\right]=0\)

\(\Leftrightarrow x\left(x+2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=1\end{matrix}\right.\)

Vậy: Sf(x)={0;-2;1}(1)

c) Thay x=0 vào đa thức g(x), ta được:

\(g\left(0\right)=-9+7\cdot0^4+2\cdot0^2+2\cdot0^3\)

\(=-9+0+0+0=-9\)

mà -9<0 nên x=0 không là nghiệm của đa thức g(x)(2)

Từ (1) và (2) suy ra x=0 là nghiệm của đa thức f(x) nhưng không là nghiệm của đa thức g(x)

Bình luận (0)

Các câu hỏi tương tự
NS
Xem chi tiết
H24
Xem chi tiết
XX
Xem chi tiết
NT
Xem chi tiết
TD
Xem chi tiết
NT
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
HD
Xem chi tiết