Ôn tập Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy của tam giác

SK

Cho góc xOy. Hai điểm A, B lần lượt nằm trên hai cạnh Ox, Oy

a) Hãy tìm điểm M cách đều hai cạnh của góc xOy và cách đều hai điểm A, B

b) Nếu OA = OB thì có bao nhiêu điểm M thỏa mãn các điều kiện trong câu a ?

TB
19 tháng 4 2017 lúc 18:05

Giải bài 68 trang 88 SGK Toán 7 Tập 2 | Giải toán lớp 7

a) Tìm M khi độ OA, OB là bất kì

- Vì M cách đều hai cạnh Ox, Oy của góc xOy nên M nằm trên đường phân giác Oz của góc xOy (1).

- Vì M cách đều hai điểm A, B nên M nằm trên đường trung trực của đoạn AB (2).

Từ (1) và (2) ta xác định được điểm M là giao điểm của đường phân giác Oz của góc xOy và đường trung trực của đoạn AB.

b) Tìm M khi OA = OB

- Vì điểm M cách đều hai cạnh của góc xOy nên M nằm trên đường phân giác của góc xOy (3).

- Ta có OA = OB. Vậy ΔAOB cân tại O.

Trong tam giác cân OAB đường phân giác Oz cũng là đường trung trực của đoạn AB (4).

Từ (3) và (4) ta xác định được vô số điểm M nằm trên đường phân giác Oz của góc xOy thỏa mãn điều kiện bài toán.

Bình luận (0)
QD
19 tháng 4 2017 lúc 18:06

a) Vì M cách đều hai cạnh Ox, Oy của ˆxOyxOy^ nên M phải thuộc tia phân giác ˆxOyxOy^.

Vì M cách đều hai điểm A và B nên M thuộc đường trung trực của AB. Vậy M là giao điểm của tia phân giác ˆxOyxOy^ và đường trung trực của đoạn thẳng AB.

b) Nếu OA = OB thì ∆AOB cân tại O nên tia phân giác ˆxOyxOy^ cũng là trung trực của AB nên mọi điểm trên tia phân giác ˆxOyxOy^ sẽ cách đều hai cạnh Ox, Oy và cách đều hai điểm A và B.

Vậy khi OA = OB thì mọi điểm trên tia phân giác ˆxOyxOy^ đều thỏa mãn các điều kiện ở câu a.



Bình luận (0)
H24
19 tháng 4 2017 lúc 18:11

a) Vì M cách đều hai cạnh Ox, Oy của \(\widehat{xOy}\) nên M phải thuộc tia phân giác \(\widehat{xOy}\).

Vì M cách đều hai điểm A và B nên M thuộc đường trung trực của AB. Vậy M là giao điểm của tia phân giác \(\widehat{xOy}\) và đường trung trực của đoạn thẳng AB.

b) Nếu OA = OB thì ∆AOB cân tại O nên tia phân giác \(\widehat{xOy}\) cũng là trung trực của AB nên mọi điểm trên tia phân giác \(\widehat{xOy}\) sẽ cách đều hai cạnh Ox, Oy và cách đều hai điểm A và B.

Vậy khi OA = OB thì mọi điểm trên tia phân giác ˆxOyxOy^ đều thỏa mãn các điều kiện ở câu a.



Xem thêm tại: http://loigiaihay.com/bai-68-trang-88-sgk-toan-7-tap-2-c42a25479.html#ixzz4eh0oMuMO

Bình luận (0)
NT
19 tháng 4 2017 lúc 19:30

a) Vì M cách đều hai cạnh Ox, Oy của ˆxOyxOy^ nên M phải thuộc tia phân giác ˆxOyxOy^.

Vì M cách đều hai điểm A và B nên M thuộc đường trung trực của AB. Vậy M là giao điểm của tia phân giác ˆxOyxOy^ và đường trung trực của đoạn thẳng AB.

b) Nếu OA = OB thì ∆AOB cân tại O nên tia phân giác ˆxOyxOy^ cũng là trung trực của AB nên mọi điểm trên tia phân giác ˆxOyxOy^ sẽ cách đều hai cạnh Ox, Oy và cách đều hai điểm A và B.

Vậy khi OA = OB thì mọi điểm trên tia phân giác ˆxOyxOy^ đều thỏa mãn các điều kiện ở câu a.



Bình luận (0)
AT
19 tháng 4 2017 lúc 20:58

Giải bài 68 trang 88 SGK Toán 7 Tập 2 | Giải toán lớp 7

a) Tìm M khi độ OA, OB là bất kì

- Vì M cách đều hai cạnh Ox, Oy của góc xOy nên M nằm trên đường phân giác Oz của góc xOy (1).

- Vì M cách đều hai điểm A, B nên M nằm trên đường trung trực của đoạn AB (2).

Từ (1) và (2) ta xác định được điểm M là giao điểm của đường phân giác Oz của góc xOy và đường trung trực của đoạn AB.

b) Tìm M khi OA = OB

- Vì điểm M cách đều hai cạnh của góc xOy nên M nằm trên đường phân giác của góc xOy (3).

- Ta có OA = OB. Vậy ΔAOB cân tại O.

Trong tam giác cân OAB đường phân giác Oz cũng là đường trung trực của đoạn AB (4).

Từ (3) và (4) ta xác định được vô số điểm M nằm trên đường phân giác Oz của góc xOy thỏa mãn điều kiện bài toán.

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
TL
Xem chi tiết
TL
Xem chi tiết
PN
Xem chi tiết
LH
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết
HY
Xem chi tiết