Violympic toán 7

DA

Cho f(x)= x100 + x99 + x98 + ..... + x2 + x+ 1. Tính f(1), f(-1), f(2), f(-2)

Cho g(x)= x + x3 + x5 + ..... + x101. Tính g(1), g(-1), g(3)

H24
13 tháng 6 2018 lúc 14:35

*) f(1) = 1^100 + 1^99 + ...+ 1 + 1

= 1+ 1 + 1 + ...+ 1 + 1 (101 số 1)

= 101

tương tự:

*) f(-1) = -1 - 1 - 1 ... - 1 - 1 + 1 (100 chữ số 1)

= -100 + 1 = -99

*) đặt f(2) = 2^100 + 2^99 + ...+ 2^2 + 2 + 1 = A

=> 2A = 2^101 + 2^100 + ... + 2^3 + 2^2 + 2

=> 2A - A = 2^101 + 2^100 + ... + 2^3 + 2^2 + 2 - ( 2^100 + 2^99 + ...+ 2^2 + 2 + 1)

<=> A = 2^101 - 1

=> f(2) = 2^101 - 1

tương tự:

*) đặt f(-2) = -2^100 - 2^99 ...- 2^2 - 2 - 1 = B

=> 2B = -2^101 - 2^100 ... - 2^3 - 2^2 - 2

=> 2B -B = -2^101 - 2^100 ... - 2^3 - 2^2 - 2 - ( -2^100 - 2^99 ...- 2^2 - 2 - 1)

<=> B = -2^101 + 1

=> f(-2) = -2^101 + 1

Bình luận (0)
H24
13 tháng 6 2018 lúc 14:44

g(1) = 1 + 1^3 + 1^5 + ... + 1^101 (51 số 1)

= 51

g(-1) = -1 - 1^3 - 1^5.... - 1^101 (51 số 1)

= -51

đặt g(3) = 3 + 3^3 + 3^5 + ...+ 3^101 = A

=> 3^2 * A = 3^3 + 3^5 + ....+ 3^103

=> 9A - A = 3^3 + 3^5 + ....+ 3^103 - (3 + 3^3 + 3^5 + ...+ 3^101)

=> 8A = -3 + 3^103

=> A = \(\dfrac{3^{103}-3}{8}\)

=> g(3) = \(\dfrac{3^{103}-3}{8}\)

Bình luận (0)

Các câu hỏi tương tự
HH
Xem chi tiết
NA
Xem chi tiết
NT
Xem chi tiết
TN
Xem chi tiết
CB
Xem chi tiết
CB
Xem chi tiết
TK
Xem chi tiết
TH
Xem chi tiết
HA
Xem chi tiết