Bài 7: Đa thức một biến

DM

cho f(x) là đa thức bậc 4. Chứng minh rằng f(x)=f(-x) thì các hệ số mũ lẻ đều bằng 0

NL
29 tháng 3 2020 lúc 17:04

- Gọi đa thức f(x) có dạng : \(f_{\left(x\right)}=x^4+x^3+x^2+x^1\)

- Để \(f_{\left(x\right)}=f_{\left(-x\right)}\) thì :

\(x^4+x^3+x^2+x^1=\left(-x\right)^4+\left(-x\right)^3+\left(-x\right)^2+\left(-x\right)^1\)

=> \(x^4+x^3+x^2+x^1=x^4+\left(-x\right)^3+x^2+\left(-x\right)^1\)

=> \(x^3+x^1+x^3+x^1=0\)

=> \(x^3+x^1=0\)

=> \(x\left(x^2+1\right)=0\)

\(x^2+1>0\)

=> \(x=0\)

Vậy đã được chứng minh .

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NT
Xem chi tiết
DH
Xem chi tiết
NT
Xem chi tiết
HQ
Xem chi tiết
NA
Xem chi tiết
TN
Xem chi tiết
LD
Xem chi tiết
KT
Xem chi tiết
SK
Xem chi tiết