Đường tròn \(\left( C \right)\) có tâm \(I\left( {1; - 2} \right)\). Đường thẳng \(\Delta \) đi qua điểm \(N\left( {1;0} \right)\) nhận \(\overrightarrow {IN} = \left( {0;2} \right)\) làm vecto pháp tuyến là \(y = 0\).
Đường tròn \(\left( C \right)\) có tâm \(I\left( {1; - 2} \right)\). Đường thẳng \(\Delta \) đi qua điểm \(N\left( {1;0} \right)\) nhận \(\overrightarrow {IN} = \left( {0;2} \right)\) làm vecto pháp tuyến là \(y = 0\).
Cho đường tròn\((C):{x^2} + {y^2} + 2x - 4y + 4 = 0\) . Viết phương trình tiếp tuyến d của (C) tại điểm M(0; 2).
Viết phương trình đường tròn \(\left( C \right)\) đi qua ba điểm \(M\left( {4; - 5} \right),N\left( {2; - 1} \right),P\left( {3; - 8} \right)\).
Cho đường tròn \(\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 25\) và điểm \(M\left( {4; - 2} \right)\).
a) Chứng minh điểm \(M\left( {4; - 2} \right)\) thuộc đường tròn \(\left( C \right)\).
b) Xác định tâm và bán kính đường tròn \(\left( C \right)\).
c) Gọi \(\Delta \) là tiếp tuyến của \(\left( C \right)\) tại M. Hãy chỉ ra một vecto pháp tuyến của đường thẳng \(\Delta \). Từ đó, viết phương trình đường thẳng \(\Delta \).
Tìm tâm và bán kính của đường tròn \(\left( C \right):{\left( {x + 2} \right)^2} + {\left( {y - 4} \right)^2} = 7\).
Hãy cho biết phương trình nào dưới đây là phương trình đường tròn. Tìm tâm và bán kính của đường tròn đó.
a) \({x^2} - {y^2} - 2x + 4y - 1 = 0\)
b) \({x^2} + {y^2} - 2x + 4y + 6 = 0\)
c) \({x^2} + {y^2} + 6x - 4y + 2 = 0\)
Tìm tâm và bán kính của đường tròn \({\left( {x + 3} \right)^2} + {\left( {y - 3} \right)^2} = 36\)
Hãy cho biết phương trình nào dưới đây là phương trình của một đường tròn và tìm tâm, bán kính của đường tròn tương ứng.
a) x2 + y2 + xy + 4x – 2 = 0;
b) x2 + y2 – 2x – 4y + 5 = 0;
c) x2 + y2 + 6x – 8y + 1 = 0.
Viết phương trình của đường tròn (C) trong mỗi trường hợp sau:
a) Có tâm I(-2; 5) và bán kính R= 7;
b) Có tâm I(1;-2) và đi qua điểm A(-2, 2);
c) Có đường kính AB, với A(-1; -3), B(-3; 5);
d) Có tâm I(1; 3) và tiếp xúc với đường thẳng x+2y +3 = 0.
Trên mặt phẳng tọa độ Oxy, một vật chuyển động nhanh trên đường tròn có phương trình \({x^2} + {y^2} = 25\) Khi tới vị trí M(3;4) thì vật bị văng khỏi quỹ đạo tròn và ngay sau đó, trong một khoảng thời gian ngắn bay theo hướng tiếp tuyến của đường tròn. Hỏi trong khoảng thời gian ngắn ngay sau khi văng, vật chuyển động trên đường thẳng nào?