a) Trên cùng một nửa mặt phẳng bờ chứa tia Ox, vì \(\widehat{xOa}\)< \(\widehat{xOc}\)(30o < 120o) nên tia Oa nằm giữa hai tia Ox và Oc.
Vì tia Oa nằm giữa hai tia Ox và Oc nên ta có:
\(\widehat{xOa}\) + \(\widehat{aOc}\) = \(\widehat{xOc}\)
30o + \(\widehat{aOc}\) = 120o
\(\widehat{aOc}\) = 120o - 30o = 90o
Vậy \(\widehat{aOc}\) là góc vuông.
b) Ta thấy \(\widehat{xOc}\) và \(\widehat{yOc}\) kề bù (cùng cạnh chung Oc nằm giữa hai tia Ox và Oy, \(\widehat{xOy}\) = 180o)
Nên \(\widehat{yOc}\) = 180o - \(\widehat{xOc}\) = 180o - 120o = 60o
c) Trên cùng một nửa mặt phẳng bờ chứa tia Oy, vì \(\widehat{yOb}\)< \(\widehat{yOc}\)(30o < 60o) nên tia Ob nằm giữa hai tia Oy và Oc.
Vì tia Ob nằm giữa hai tia Oy và Oc nên ta có:
\(\widehat{yOb}\) + \(\widehat{bOc}\) = \(\widehat{yOc}\)
30o + \(\widehat{bOc}\) = 60o
\(\widehat{bOc}\) = 60o - 30o = 30o
Vậy Tia Ob là tia phân giác của \(\widehat{yOc}\) vì:
+ Tia Ob nằm giữa hai tia Oy và Oc
+ \(\widehat{yOb}\) = \(\widehat{bOc}\) = 30o