Ôn thi vào 10

TL

Cho điểm M nằm ngoài đường tròn (O;R). Vẽ tiếp tuyến MA (A là tiếp điểm), cát tuyến MBC (B nằm giữa M và C) và O nằm trong góc AMC. Gọi I là trung điểm của BC. Tia OI cắt cung nhỏ BC tại N, AN cắt BC tại D

a) Cm AD là phân giác của góc BAC

b) Cm MD2 = MB. MC

c) Gọi H, K là hình chiếu của N lên AB và AC. Chứng minh ba điểm H,I,K thẳng hàng

TM
17 tháng 5 2022 lúc 9:55

a. Ta có ON cắt BC tại I, I là trung điểm của BC, ON là bán kính ⇒ ON ⊥ BC tại I.

Xét △OCI và △OBI :

\(\hat{OIC}=\hat{OIB}=90^o\left(cmt\right)\)

\(IC=IB\left(gt\right)\)

OI chung.

\(\Rightarrow\Delta OCI=\Delta OBI\left(c.g.c\right)\)

⇒ \(\hat{IOC}=\hat{IOB}\) hay : \(\hat{NOC}=\hat{NOB}\Rightarrow\stackrel\frown{NC}=\stackrel\frown{NB}\)

Mà : \(\hat{NAB}\) hay \(\hat{DAB}\) nội tiếp chắn cung NB, \(\hat{NAC}\) hay \(\hat{DAC}\) nội tiếp chắn cung NC.

Vậy : \(\hat{DAC}=\hat{DAB}\) hay AD là phân giác của góc BAC.

 

b. \(\hat{MAB}=\dfrac{1}{2}sđ\stackrel\frown{AB}\) (góc tạo bởi tia tiếp tuyến và dây cung).

\(\hat{ACB}=\dfrac{1}{2}sđ\stackrel\frown{AB}\) (góc nội tiếp chắn cung AB).

\(\Rightarrow\hat{MAB}=\hat{ACB}\Leftrightarrow\hat{MAB}=\hat{ACM}\)

Xét △MAB và △MCA :

\(\hat{MAB}=\hat{ACM}\left(cmt\right)\)

\(\hat{M}\) chung

\(=> \Delta MAB \backsim \Delta MCA (g.g)\) \(\Rightarrow\dfrac{MA}{MC}=\dfrac{MB}{MA}\Leftrightarrow MA^2=MB.MC\left(a\right)\)

Mặt khác : \(\hat{DAB}=\hat{DAC}\left(cmt\right)\) và \(\hat{DCA}=\hat{MAB}\left(cmt\right)\)

Mà \(\hat{ADM}=\hat{DAC}+\hat{DCA}\) (tính chất góc ngoài của tam giác).

\(\Rightarrow\hat{ADM}=\hat{DAB}+\hat{MAB}\Leftrightarrow\hat{ADM}=\hat{MAD}\)

⇒ △ADM cân tại M ⇒ \(MA=MD\left(b\right)\)

Từ (a), (b) : Vậy : \(MD^2=MB.MC\left(đpcm\right)\)

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
AD
Xem chi tiết
WC
Xem chi tiết
NL
Xem chi tiết
SS
Xem chi tiết
KT
Xem chi tiết
HN
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết