Violympic toán 7

H24

Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) . CMR :
\(a,\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)

\(b,\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{a^3-b^3}{c^3-d^3}\)

HL
2 tháng 8 2018 lúc 20:11

bài này bạn cứ đặt a=bk, c=dk là được dễ tính lắm sao đó thì thay vào rồi rút gọn là được khi đó bạn sẽ chứng minh được dễ dàng hihi

Bình luận (2)
HL
3 tháng 8 2018 lúc 9:18

a) Đặt a/b=c/d=k

suy ra a=bk, c=dk

Vậy 4a-3b/4c-3d=4bk-3b/4dk-3d=b(4k-3)/d(4k-3)=b/d

4a+3b/4c+3d=4bk+3b/4dk+3d=b(4k+3)/d(4k+3)=b/d

Nên 4a-3b/4c-3d=4a+3b/4c+3d=b/d

Bình luận (0)
HL
3 tháng 8 2018 lúc 9:27

Đặt a/b=c/d=k

suy ra a=bk, c=dk. Ta có:

a^3+b^3/c^3+d^3=(bk)^3+b^3/(dk)^3+d^3=b^3(k^3+1)/d^3(k^3+1)=b^3/d^3

a^3-b^3/c^3-d^3=(bk)^3-b^3/(dk)^3-d^3=b^3(k^3-1)/d^3(k^3-1)=b^3/d^3

Vậy a^3+b^3/c^3+d^3=a^3-b^3/c^3-d^3=b^3/d^3

Bình luận (0)
HL
3 tháng 8 2018 lúc 9:28

dấu / là dấu phần phân số nha, mình không biết vẽ ra gạch phân số nên bạn thông cảm cho

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
MT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
PT
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết