Ôn tập toán 7

LV

Cho \(\dfrac{a}{b}=\dfrac{c}{d}\),Chứng minh \(\dfrac{a^2}{b^2}=\dfrac{a.c}{b.d}\)

NH
19 tháng 8 2017 lúc 17:34

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=bk\),\(c=dk\)

\(\dfrac{a^2}{b^2}=\dfrac{bk^2}{b^2}=k^2\left(1\right)\)

\(\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\left(2\right)\)

Từ (1) và (2)=>\(\dfrac{a^2}{b^2}=\dfrac{ac}{bd}\)(đpcm)

Bình luận (0)
EJ
19 tháng 8 2017 lúc 17:42

Đặt \(\dfrac{a}{b}=k;\dfrac{c}{d}=k\)

\(\Rightarrow a=kb;c=kd\)

\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{bk^2}{b^2}=k^2\)

\(\Rightarrow\dfrac{ac}{bd}=\dfrac{bkdk}{bd}=k^2\)

Từ các chứng minh trên cho ta thấy

\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{a.c}{b.d}\)

Bình luận (0)
MS
19 tháng 8 2017 lúc 19:31

Đặt:

\(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{bk^2}{b^2}=k^2\)

\(\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=\dfrac{k^2bd}{bd}=k^2\)

\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{ac}{bd}\Rightarrowđpcm\)

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
CA
Xem chi tiết
PA
Xem chi tiết
NT
Xem chi tiết
DH
Xem chi tiết
NT
Xem chi tiết
DH
Xem chi tiết
HN
Xem chi tiết
NL
Xem chi tiết