Violympic toán 7

H24

cho \(\dfrac{a}{b}=\dfrac{c}{d}\) , cmr: \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

TH
10 tháng 12 2017 lúc 16:44

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\). \(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có:

\(\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=\dfrac{bdk^2}{bd}=k^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)

\(\Rightarrow\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\left(=k^2\right)\)

\(\Rightarrowđpcm\)

Bình luận (1)
MD
10 tháng 12 2017 lúc 16:40

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow a=n.c,b=n.d\)

Thế vô rồi làm nha!

:>

Bình luận (1)

Các câu hỏi tương tự
TK
Xem chi tiết
NN
Xem chi tiết
LV
Xem chi tiết
NT
Xem chi tiết
CN
Xem chi tiết
TM
Xem chi tiết
CC
Xem chi tiết
BA
Xem chi tiết
CV
Xem chi tiết