Cho \(\Delta ABC\)cân tại A. Kẻ BE\(\bot\)AC, CF\(\bot\)AB (E \(\in\)AB, F\(\in\)AC)
a) Chứng minh: \(\Delta BEC\) = \(\Delta CFB\).
b) Gọi O là giao điểm của BE và CF. Chứng minh: AO là tia phân giác của góc BAC.
c) Tính độ dài BE, biết BC = 13cm, CE = 5cm.
d) Gọi H là giao điểm của AO và BC. Chứng minh: AO\(\bot\)BC tại H.
Giúp mk nha ngày 18/2/2017 là mk phải nộp rùi!
Giải:
a) Xét \(\Delta BEC,\Delta CFB\) có:
\(\widehat{E_1}=\widehat{F_1}=90^o\)
BC: cạnh chung
\(\widehat{B}=\widehat{C}\) ( \(\Delta ABC\) cân tại A )
\(\Rightarrow\Delta BEC=\Delta CFB\) ( c.huyền - g.nhọn ) ( đpcm )
b) Vì \(\Delta BEC=\Delta CFB\)
\(\Rightarrow\widehat{B_1}=\widehat{C_1}\) ( góc t/ứng )
\(\Rightarrow\Delta BOC\) cân tại O
\(\Rightarrow OB=OC\)
Xét \(\Delta ABO,\Delta ACO\) có:
AB = AC ( t/g ABC cân tại A )
AO: cạnh chung
OB = OC ( cmt )
\(\Rightarrow\Delta ABO=\Delta ACO\left(c-c-c\right)\)
\(\Rightarrow\widehat{A_1}=\widehat{A_2}\) ( góc t/ứng )
\(\Rightarrow AO\) là tia phân giác của \(\widehat{A}\) ( đpcm )
c) Áp dụng định lí Py-ta-go vào \(\Delta BEC\left(\widehat{E_1}=90^o\right)\)ta có:
\(BC^2=BE^2+CE^2\)
\(\Rightarrow13^2=BE^2+5^2\)
\(\Rightarrow BE^2=144\)
\(\Rightarrow BE=12\)
d) Xét \(\Delta ABH,\Delta ACH\) có:
AB = AC ( t/g ABC cân tại A )
\(\widehat{A_1}=\widehat{A_2}\) ( theo b )
AH: cạnh chung
\(\Rightarrow\Delta ABH=\Delta ACH\left(c-g-c\right)\)
\(\Rightarrow\widehat{AHB}=\widehat{AHC}\) ( góc t/ứng )
Mà \(\widehat{AHB}+\widehat{AHC}=180^o\) ( kề bù )
\(\Rightarrow\widehat{AHB}=\widehat{AHC}=90^o\)
\(\Rightarrow AH\perp BC\)
hay \(AO\perp BC\) tại H ( đpcm )
Vậy...
Câu dài quá ,mình sẽ tìm thời gian rảnh để giải cho bạn ,