a) Xét \(\Delta BDK\) và \(\Delta BAD\) có:
BD (chung)
\(\widehat{KBD}=\widehat{ABD}\) (BD là tia phân giác \(\widehat{B}\) )
\(\widehat{DKB}=\widehat{DAB}=90^0\)
Do đó: \(\Delta BDK=\Delta BAD\left(ch-gn\right)\)
=> KB = AB (hai cạnh tương ứng)
=> \(\Delta KAB\) cân tại B
=> B \(\in\) đường trung trực của đoạn thẳng KA (1)
=> DK = DA (hai cạnh tương ứng)
=> \(\Delta DKA\) cân tại D
=> D \(\in\) đường trung trực của đoạn thẳng KA (2)
(1), (2) => BD là đường trung trực của đoạn thẳng KA
=> BD \(\perp\) AK
b) Vì \(\widehat{DKH}=\widehat{AHB}=90^0\)
=> DK // AH (đồng vị)
=> \(\widehat{DKA}=\widehat{KAH}\) (sole trong) (1)
Vì \(\Delta DKA\) cân
=> \(\widehat{DAK}=\widehat{DKA}\) (2)
(1); (2) => \(\widehat{DAK}=\widehat{KAH}\)
=> AK là tia phân giác \(\widehat{HAC}\)
c) Vì \(\Delta BDK=\Delta BAD\) (cmt)
=> \(\widehat{KDB}=\widehat{ADB}\) (hai góc tương ứng)
Xét \(\Delta DAI\) và \(\Delta DKI\) có:
DI (chung)
\(\widehat{ADI}=\widehat{KDI}\) (cmt)
DK = DA (cmt)
Do đó: \(\Delta DAI=\Delta DKI\) (c-g-c)
=> \(\widehat{DAI}=\widehat{DKI}\) (hai góc tương ứng)
mà \(\widehat{DAK}=\widehat{DKA}\)
Do đó: \(\widehat{KAI}=\widehat{AKI}\)
mà \(\widehat{DAK}=\widehat{KAI}\)
=> \(\widehat{DAK}=\widehat{AKI}\)
=> IK // AC