Violympic toán 8

MT

CHO \(\Delta ABC\) voi 3 duong cao AA', BB', CC'. Goi H la truc tam cua tam giac do. CMR: \(\dfrac{HA'}{AA'}+\dfrac{HB'}{BB'}+\dfrac{HC'}{CC'}=1\)

HELP ME =.=

PL
4 tháng 12 2017 lúc 17:51

A B C A' B' C' H Ta có : \(\dfrac{HA'}{AA'}=\dfrac{S_{HBC}}{S_{ABC}}\)( Vì có chung đáy BC nên tỉ số hai đường cao cũng bằng tỉ số hai diện tích) ( * )

Tương tự , ta cũng có :

\(\dfrac{HB'}{BB'}=\dfrac{S_{HCA}}{S_{ABC}}\) (**)

\(\dfrac{HC'}{CC'}=\dfrac{S_{HAB}}{S_{ABC}}\) (***)

Từ : ( * ; ** ; ***) =>\(\dfrac{HA'}{AA'}+\dfrac{HB'}{BB'}+\dfrac{HC'}{CC'}=\dfrac{S_{HAC}+S_{HAB}+S_{HBC}}{S_{ABC}}\)

\(=\dfrac{S_{ABC}}{S_{ABC}}=1\left(đpcm\right)\)


Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
BB
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
WO
Xem chi tiết
ND
Xem chi tiết
CG
Xem chi tiết
XX
Xem chi tiết