Ôn tập cuối năm phần hình học

HD

Cho \(\Delta ABC\) , trên cạnh AB lấy điểm D , kẻ DE song song với BC ( \(E\in AC\) ) . Kẻ đường thẳng Cx song song vs AB , Cx cắt đường thẳng DE ở K . Gọi H là giao điểm của AC và BK

a , Chứng minh : \(\Delta ABC\sim\Delta CEK\)

b , Chứng minh ; BC . HE = HC . KE

c , Giả sử diện tích tam giác ABC là 36 \(cm^2\) ; AD = 2DB . Tính diện tích tam giác BHE

AT
22 tháng 4 2018 lúc 12:25

Hình vẽ:

x A B C K E D H 1 2 1 2

~~~~

a/ vì: \(\left\{{}\begin{matrix}DE\left|\right|BC\\Cx\left|\right|AB\end{matrix}\right.\) (gt) => \(\left\{{}\begin{matrix}DK\left|\right|BC\\CK\left|\right|BD\end{matrix}\right.\)

=> DKCB là hbh

=> \(\widehat{ABC}=\widehat{CKE}\)

Có: \(\widehat{E_1}=\widehat{E_2}\) (đối đỉnh)

Mặt khác: \(\widehat{E_2}=\widehat{C_1}\) (đồng vị)

=> \(\widehat{C_1}=\widehat{E_1}\)

Xét ΔABC và ΔCEK có:

\(\widehat{ABC}=\widehat{CKE}\) (cmt)

\(\widehat{C_1}=\widehat{E_1}\left(cmt\right)\)

=> ΔABC ~ ΔCKE (g.g) (đpcm)

b/ Xét ΔBCH và ΔKEH có:

\(\widehat{BHC}=\widehat{KHE}\) (đối đỉnh)

\(\widehat{C_1}=\widehat{E_1}\) (đã cm)

=> ΔBCH ~ ΔKEH (g.g)

=> \(\dfrac{BC}{KE}=\dfrac{HC}{HE}\) => BC . HE = HC . KE (đpcm)

c/ 0 biet lam

Bình luận (0)

Các câu hỏi tương tự
HB
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
LV
Xem chi tiết
PL
Xem chi tiết
SK
Xem chi tiết
NN
Xem chi tiết
ML
Xem chi tiết
NK
Xem chi tiết