Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho dãy số (un) \(\left\{{}\begin{matrix}u_1=\dfrac{1}{3}\\u_{n+1}=\dfrac{n+1}{3n}.u_n,n\ge1\end{matrix}\right.\)tính tổng S=\(\sum_{k=1}^{10}\)\(\dfrac{u_k}{k}\)?
Cho dãy số (Un) xác định bởi:\(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=-\dfrac{3}{2}u_n^2+\dfrac{5}{2}u_n+1\end{matrix}\right.\), \(\forall n\ge1\)
1) Hãy tính u2.u3,u4,u5
2) Dự đoán công thức của số hạng tổng quát Un
Cho dãy số (Un) được xác định như sau: \(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=\sqrt{u_n.\left(u_n+1\right).\left(u_n+2\right).\left(u_n+3\right)+1}\end{matrix}\right.,\forall n\in N\). Đặt \(v_n=\sum\limits^n_{i=1}\dfrac{1}{u_i+2}\). Tính \(v_{2020}\)
cho dãy số (Un) được xác định bởi \(\left\{{}\begin{matrix}u_1=2\\n\left(n^2-1\right)u_n=u_1+2u_2+3u_3+...+\left(n-1\right)u_{n-1}\end{matrix}\right.\)
tìm công thức tổng quát để tính Un
Cho dãy số (Un) được xác định bởi: \(\left\{{}\begin{matrix}u_1=\dfrac{1}{2}\\u_{n+1}=\dfrac{u_n}{3.\left(3n+1\right)u_n+1}\end{matrix}\right.\),\(n\in N\)*. Tính tổng 2020 số hạng đầu tiên của dãy số đó
cho dãy số(un) được xác định bởi \(\left\{{}\begin{matrix}u_1=2\\u_{n+1}=\sqrt{\dfrac{n+1}{n}}\left(u_n+3\right)-3\end{matrix}\right.\) ,n=1,2,...Tìm công thức tổng quát của dãy số (un) và tính \(\lim\limits\dfrac{u_n}{\sqrt{n}}\) .
Cho dãy số (Un) xác định bởi công thức truy hồi \(\left\{{}\begin{matrix}u_1=2\\u_{n+1}=\dfrac{n+2}{4.\left(n+1\right)}u_n\end{matrix}\right.\), \(n\in\)N*. Công thức số hạng tổng quát của dãy số (Un) là?
Cho dãy số (Un): \(\left\{{}\begin{matrix}u_1=1,u_2=2\\u_{n+2}=-\sqrt{2}.u_{n+1}-u_n\end{matrix}\right.\). Hãy xác định số hạng tổng quát của dãy (Un)
Cho dãy số (Un) xác định bởi: \(\left\{{}\begin{matrix}u_1=\dfrac{3}{2}\\u_{n+1}=\dfrac{1}{4-4u_n}\end{matrix}\right.\); \(\forall n\in N\)*. Tìm số hạng tổng quát Un