Giả sử BĐT này đúng: \(\text{AH+BC>AB+AC
}\)
\(\Rightarrow\left(AH+BC\right)^2>\left(AB+AC\right)^2\)
\(\Leftrightarrow AH^2+2AH.BC+BC^2>AB^2+2AB.AC+AC^2\left(1\right)\)
Ta có:
\(BC^2=AB^2+AC^2\left(2\right)\)
\(2AH.BC=2AB.AC\left(3\right)\)
Thế(2)và (3)vào pt (1), ta được:
\(AH^2+AB^2+2AB.AC+AC^2>AB^2+2AB.AC+AC^2\)(Luôn đúng)