Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Chương III : Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy của tam giác

PA

Cho ΔABC có góc B = 60°, AB = 2cm, BC = 5cm. Trên cạnh BC lấy điểm D sao cho BA = BD
a) Chứng minh tam giác ABD là Δ đều
b) Gọi H là trung điểm của BD. Chứng minh AH⊥BD
c) Tính độ dài AC
d) So sánh BAC với 90°

TC
4 tháng 2 2020 lúc 10:31

a) Ta có:

BA=BD ⇒△BAD cân tại B có \(\widehat{B}=60^0\)

⇒△BAD đều (đpcm)

b)△BAD đều (câu a)

⇒AB=AD

Xét △AHB và △AHD có:

AH chung

AB=AD (cmt)

HB=HD (gt)

⇒ △AHB=△AHD (ccc)⇒\(\widehat{AHB}=\widehat{AHD}=90^0\Rightarrow AH\text{⊥}BD\)(đpcm)

c)Áp dụng định lý Pytago vào △AHB vuông tại H, ta có:

\(AB^2=AH^2+HB^2\Rightarrow2^2=AH^2+1^2\Rightarrow4=AH^2+1\Rightarrow AH^2=3\Rightarrow AH=\sqrt{3}\left(AH>0\right)\)

Áp dụng định lý Pytago vào △AHC vuông tại H, ta có:

\(AC^2=AH^2+HC^2\Rightarrow AC^2=\left(\sqrt{3}\right)^2+4^2\Rightarrow AC^2=3+16=19\Rightarrow AC=\sqrt{19}\left(AH>0\right)\)

d)Ta có:

\(AB^2+AC^2=2^2+\left(\sqrt{19}\right)^2=4+19=23\) \(\ne BC^2=5^2=25\)

nên △ABC không phải là tam giác vuông

\(\widehat{BAC}< 90^{0^{ }}\)(23 cm<25cm)

A B C D H

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TN
Xem chi tiết
LC
Xem chi tiết
HD
Xem chi tiết
PA
Xem chi tiết
VQ
Xem chi tiết
H24
Xem chi tiết
NV
Xem chi tiết
NH
Xem chi tiết
NN
Xem chi tiết