Violympic toán 8

TQ

Cho ΔABC có AB<AC, AD là phân giác góc A. Đường trung trực của AD cắt đường thẳng BC tại K

a)Cminh KA\(^2\)=KB.KC

b)Tính KD, biết BD=2cm,DC=3cm

AH
2 tháng 5 2019 lúc 2:14

Lời giải:

a)

Vì $K$ nằm trên đường trung trực của $AD$ nên $KA=KD$

\(\Rightarrow \triangle KAD\) cân tại $K$
\(\Rightarrow \widehat{KDA}=\widehat{KAD}\)

Mà: \(\widehat{BAD}=\widehat{CAD}\) (do $AD$ là tia phân giác góc A)

\(\Rightarrow \widehat{KDA}+\widehat{BAD}=\widehat{KAD}+\widehat{CAD}\)

\(\Leftrightarrow \widehat{ABK}=\widehat{CAK}\)

Xét tam giác $ABK$ và $CAK$ có:

\(\left\{\begin{matrix} \widehat{K}-\text{chung}\\ \widehat{ABK}=\widehat{CAK}(cmt)\end{matrix}\right.\Rightarrow \triangle ABK\sim \triangle CAK(g.g)\)

\(\Rightarrow \frac{AK}{CK}=\frac{BK}{AK}\Rightarrow KA^2=KB.KC\) (đpcm)

b)

Theo kết quả phần a:

\(KA^2=KB.KC\). Mà $KA=KD$ nên:

\(KD^2=KB.KC\)

\(\Leftrightarrow (KB+BD)^2=KB(KB+BC)\)

\(\Leftrightarrow (KB+2)^2=KB(KB+5)\)

\(\Leftrightarrow KB=4\) (cm)

Do đó:

\(KD=KB+BD=4+2=6\) (cm)

Vậy.........

Bình luận (0)
AH
2 tháng 5 2019 lúc 2:18

Hình vẽ:

Violympic toán 8

Bình luận (0)

Các câu hỏi tương tự
TQ
Xem chi tiết
TQ
Xem chi tiết
TQ
Xem chi tiết
TQ
Xem chi tiết
BB
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết