Cho \(\Delta\)ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BM vuông góc với AD tại M, kẻ CN vuông góc với AE tại N. Gọi O là giao điểm của hai đường thẳng BM và CN. CMR: AO là tia phân giác góc DAE.
Cho \(\Delta ABC\) cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho: BD=CE. Kẻ BH vuông góc với AD tại H, kẻ CE vuông góc với AE tại K. Gọi I là giao điểm của 2 đường thẳng BH và CK. Chứng minh rằng:
a, \(\Delta ABH\)=\(\Delta ACK\)
b, AI là tia phân giác của ∠DAE
c, HK//DE
Cho tam giác ABC vuông tại A có AB= AC. Gọi H là trung điểm của cạnh BC. a. Chứng minh ΔAHB= ΔAHC b, Chứng minh rằng AH vuông góc với BC c. Tính số đo góc BHA và BCA? d. Trên tia đối của tia AH lấy điểm E sao cho AE = BC, Trên tia đối của tia CA lấy điểm F sao cho CF = AB. Tính góc EBF
VẼ HÌNH CHO MÌNH LUÔN NHA! CẢM ƠN MỌI NGƯỜI!
Cho tam giác ABC có góc B= 2.góc C. Tia phân giác của góc B cắt AC ở D. Trên tia đối của tia BD lấy điểm E sao cho BE=AC. Trên tia đối của tia CB lấy điểm K sao cho CK=AB . Chứng minh rằng : AE = AK
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM=CN. Chứng minh tam giác AMN là tam giác cân
Bài 8: Cho tam giác ABC, AB = AC. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) Tam giác ADE cân b) ABD = ACE
Bài 9: Cho tam giác ABC, AB = AC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. Gọi M là giao điểm của BE và CD. Chứng minh: a) BE = CD b) BMD = CME. c) AM là tia phân giác của góc BAC.
giúp em bài này với ah, em cảm ơn mọi người rất nhiều ( e cần gấp lắm)
Cho △ABC, O là trung điểm của BC. Từ B kẻ BD vuông góc với AC (D ∈ AC).Từ C kẻ CE vuông góc với AB (E∈AB)
a,CMR:\(OD=\dfrac{1}{2}BC\)
b,Trên tia đối của tia DE lấy N, trên tia đối của ED lấy M sao cho EM=DN. Chứng minh rằng △OMN là tam giác cân
Cho tam giác cân ABC (AB = AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:
a) DM = EN
b) Đường thẳng BC cắt MN tại trung điểm I của MN.c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên BC