Violympic toán 7

BC

Cho đa thức P(x)=ax2 +bx +c. Chứng tỏ rằng P(-1).P(-2)≤ 0 biết rằng 5a -3b +2c=0

CG
3 tháng 5 2018 lúc 20:23

Nếu như theo mik ns thì bài toán làm sau đây

\(p\left(-1\right)=a\left(-1\right)^2-b.1+c=a-b+c\) (1)

\(p\left(2\right)=a\left(2^2\right)+b.2+c=4a-2b+c\) (2)

Lấy (1)+(2)

\(p\left(-1\right)+p\left(-2\right)=5a-3b+2c=0\)

\(p\left(-1\right)=-P\left(-2\right)\)\(=p\left(2\right)\)

Lấy p(-1).p(2) trái dấu

\(\Rightarrow p\left(-1\right).p\left(2\right)\le0\)

\(\Rightarrow p\left(-1\right).p\left(-2\right)\le0\)

Bình luận (0)
CG
3 tháng 5 2018 lúc 20:16

Bạn ơi phải là p(-1).p(2) hoặc p(1).p(-2)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NH
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
DD
Xem chi tiết
H24
Xem chi tiết
NC
Xem chi tiết
NC
Xem chi tiết
NH
Xem chi tiết