Bài 5: Đa thức

H24

cho đa thức f(x)=ax^2+bx+c có 2a, a+b,c là số nguyên. c/m f(x) nguyên với mọi x nguyên

AH
3 tháng 12 2023 lúc 0:36

Lời giải:
Đặt $2a=m, a+b=n$ với $m,n$ là số nguyên. Khi đó:

$a=\frac{m}{2}; b=n-\frac{m}{2}$.

Khi đó:

$f(x)=\frac{m}{2}x^2+(n-\frac{m}{2})x+c$ với $m,n,c$ là số nguyên.

$f(x)=\frac{m}{2}(x^2-x)+nx+c=\frac{m}{2}x(x-1)+nx+c$
Với $x$ nguyên thì $x(x-1)$ là tích 2 số nguyên liên tiếp nên:

$x(x-1)\vdots 2$

$\Rightarrow \frac{m}{2}x(x-1)\in\mathbb{Z}$

Mà: $nx\in\mathbb{Z}, c\in\mathbb{Z}$ với $x,m,n,c\in\mathbb{Z}$

$\Rightarrow f(x)\in\mathbb{Z}$

Ta có đpcm.

Bình luận (0)

Các câu hỏi tương tự
MN
Xem chi tiết
BA
Xem chi tiết
DD
Xem chi tiết
HA
Xem chi tiết
KA
Xem chi tiết
HN
Xem chi tiết
TN
Xem chi tiết
TL
Xem chi tiết
HH
Xem chi tiết