Bài 5: Đa thức

DG

Cho đa thức f(x) thỏa mãn \(\left(x-1\right)\cdot f\left(x\right)=\left(x+2\right).f\left(x+3\right)\)với mọi \(x\). Tìm 5 nghiệm của đa thức \(f\left(x\right)\)

CL
7 tháng 7 2019 lúc 13:28

Ta có: Với 1=0 thì (1-1).f(1)=(1+2).f(1+3) hay 0=3.f(4) do 3 khác 0 nên f(4)=0 vậy 4 là 1 nghiệm của f(x)

Với x=-2 thì (-2-1).f(-2)=(-2+2).f(-2+3) hay (-3).f(-2)=0 do -3 khác 0 nên f(-2)=0 vậy -2 là 1 nghiệm của f(x)

Với x=4 ta có: (4-1).f(4)=(4+2).f(4+3) suy ra 0=6.f(7) (vì f(4)=0)

do 6 khác 0 nên f(7)=0 hay 7 là 1 nghiệm của f(x)

Với x=7 ta có: (7-1).f(7)=(7+2).f(7+3) suy ra 0=9.f(10) (vì f(7)=0)

do 9 khác 0 nên f(10) bằng 0 hay 10 là 1 nghiệm của f(x)

Với x=10 ta có: (10-1).f(10)=(10+2).f(10+3) suy ra 0=12.f(13) (vì f(10)=0)

do 12 khác 0 nên f(13)=0 hay 13 là 1 nghiệm của f(x)

Vậy 5 nghiệm của f(x) tìm được là: -2;4;7;10;13

Bình luận (1)
CL
7 tháng 7 2019 lúc 13:32

Mình xin lỗi: Với x=1 (ở dòng đầu tiên nhé)

Bình luận (0)
CL
7 tháng 7 2019 lúc 13:33

Sửa lại sẽ thành: Ta có: Với x=1 thì (1-1).f(1)=(1+2).f(1+3) hay 0=3.f(4) do 3 khác 0 nên f(4)=0 vậy 4 là 1 nghiệm của f(x)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
TF
Xem chi tiết
LH
Xem chi tiết
PD
Xem chi tiết
TG
Xem chi tiết
MC
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
LC
Xem chi tiết