Violympic toán 8

BB

Cho đa thức: \(f\left(x\right)=x^4+ax^3+bx^2+cx+d\) ( với a, b, c, d là các số thực). Biết f(1)=10; f(2)=20; f(3)=30. Tính giá trị của biểu thức: A=f(8)+f(-4)

TH
3 tháng 3 2021 lúc 22:51

Đặt \(g(x)=10x\).

Ta có \(g\left(1\right)=10=f\left(1\right);g\left(2\right)=20=f\left(2\right);g\left(3\right)=30=f\left(3\right)\).

Từ đó \(\left\{{}\begin{matrix}f\left(1\right)-g\left(1\right)=0\\f\left(2\right)-g\left(2\right)=0\\f\left(3\right)-g\left(3\right)=0\end{matrix}\right.\)

\(\Rightarrow f\left(x\right)-g\left(x\right)=Q\left(x\right).\left(x-1\right)\left(x-2\right)\left(x-3\right)\).

\(\Rightarrow f\left(x\right)=10x+Q\left(x\right)\left(x-1\right)\left(x-2\right)\left(x-3\right)\)

\(\Rightarrow f\left(8\right)+f\left(-4\right)=80+Q\left(x\right).7.6.5+\left(-40\right)+Q\left(x\right).\left(-5\right).\left(-6\right).\left(-7\right)=80-50=40\).

Bình luận (2)

Các câu hỏi tương tự
NT
Xem chi tiết
VT
Xem chi tiết
BB
Xem chi tiết
LT
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
QN
Xem chi tiết
KC
Xem chi tiết
NH
Xem chi tiết