cho đa thức f(x) = ax4 + bx3 + cx2 + dx + e với a,b,c,d,e ∈ Z và a ≠ 0. Biết rằng f(1) = 10; f(2) = 20; f(3) = 30. Tính giá trị của biểu thức A = \(\frac{f\left(12\right)+f\left(-8\right)}{10}+2019\)
Cho đa thức \(f\left(x\right)=ax^2+bx+c\) . Biết rằng 6a-12b-c = 0 . Chứng tỏ rằng \(f\left(2\right).f\left(-3\right)\ge0\)
cho đa thức f(x)=ax^2+bx+c .Biết f(0)=2017 ;f(1)=2018 ;f(-1)=2019 .Tính f(2)
Cho đa thức \(f\left(x\right)=ax^2+bx+c\). Biết 10a+b+c=0. Chứng minh: \(f\left(4\right).f\left(-2\right)\le0\)
Cho đa thức: \(f\left(x\right)=ax^2+bx+c\) biết \(5a+b+2c=0\). Chứng tỏ rằng: \(f\left(-1\right).f\left(2\right)\le0\)
Cho biểu thức: \(f\left(x\right)=\text{ax}^2+bx+c\) biết \(5a+b+c=0\). Chứng tỏ \(f\left(-1\right).f\left(3\right)\le0\)
Cho 2 đa thức sau :
\(f\left(x\right)=\left(x-1\right)\left(x+2\right)\)
\(g\left(x\right)=x^3+ax^{2\:}+bx+2\)
Xác định a và b biết nghiệm của đa thức f(x) cũng là nghieemj của đa thức g(x)
Cho hai đa thức : \(f\left(x\right)=\left(x-1\right).\left(x+3\right)\) và \(g\left(x\right)=x^3-ax^{2\:}+bx-3\)
Xác định hệ số a ; b của đa thức g(x) biết nghiệm của đa thức f (x) cũng là nghiệm của đã thức g (x)
a)Tìm các số a,b biết đa thức \(f\left(x\right)=ax+b\)
và \(f\left(1\right)=1;f\left(x\right)=4\)
b)Chứng tỏ rằng đa thức f(x) có ít nhất 2 nghiệm biết :
x . f(x+1) = (x+3).f(x)