Áp dụng phương pháp xét giá trị riêng vào bài toán
Ta có:\(A=ax^2+bx+c=\left(x-1\right).Q\left(x\right)+r\)
\(=\left(x+1\right).P\left(x\right)+r\)
Do đẳng thức đúng với mọi x nên lần lượt đặt \(x=1;x=-1\)
\(\Rightarrow a.1^2+b.1+c=\left(1-1\right).Q\left(x\right)+r\)hay \(a+b+c=r\)
Tương tự khi x = -1 thì \(a-b+c=r\)
\(\Rightarrow a+b+c=a-b+c\Rightarrow2b=0\Rightarrow b=0\)