Bất phương trình bậc nhất một ẩn

H24

cho các số nguyên x,y thỏa mãn \(x^2-3xy+y^2\) chia hết cho 25 . CM : xy chia hết cho 25

AH
8 tháng 6 2021 lúc 16:42

Lời giải:

$x^2-3xy+y^2\vdots 25(1)$

$\Rightarrow x^2-3xy+y^2\vdots 5$

$\Leftrightarrow (x+y)^2-5xy\vdots 5$

$\Leftrightarrow (x+y)^2\vdots 5$

$\Rightarrow x+y\vdots 5$

$\Rightarrow (x+y)^2\vdots 25$

$\Leftrightarrow x^2+2xy+y^2\vdots 25(2)$

Từ $(1);(2)\Rightarrow 5xy\vdots 25$

$\Rightarrow xy\vdots 5$

Do đó $x$ hoặc $y$ chia hết cho $5$

Không mất tổng quát giả sử $x\vdots 5$

Do $x^2-3xy+y^2\vdots 25\vdots 5$ nên $y^2\vdots 5$

$\Rightarrow y\vdots 5$

$\Rightarrow xy\vdots 25$

Ta có đpcm.

 

Bình luận (0)